

Co-Packaging on Organic Laminates: MOTION Phase 2 ARPA-E ENLITENED Kickoff Meeting 1/13/2021

Daniel Kuchta, PI, IBM Research

MOTION Phase 1 Co-packaging for CPU/GPU High-level Specifications

- ARPA-E Sponsored Project on co-packaging
- IBM and Finisar collaboration
- ◆56GBd NRZ; BER tested to <1E-12 pre-FEC
- ◆0°C to 70°C Case
- 6dB (electrical) link budget (XSR-like)
- 2 dB optical link margin (30m w/connectors)
- Solderable onto ASIC 1st level substrate
- < 4 pJ/bit (3.2W, 16 channels)</p>
- ◆W:13mm x D:13mm x H:4mm
- •25¢/Gb/s

=MOTION=: Multi-wavelength Optical Transceivers Integrated on Node

MOTION Transceiver Package Overview

MOTION Vision: Multi-Component Carrier with CSOP for high speed I/O

with lens and clip

Final Assembly with lens and clip attached

Fully Assembled with fiber cable and strain relief

4mm total height

Keel

A 13mm x 13mm package with socket insert or interposer

Sockets may be helpful but incur cost as well as signal & area loss!

Pictures of the completed MOTION modules

← 13mm —

ICs+OEs on glass carrier

50Gbps NRZ data

NRZ Data

51.28G clock

MOTION to MOTION optical & electrical link testing

2 MOTION modules soldered to laminate

- MOTION has a low energy electrical interface designed for on-laminate links.
- Unique to MOTION is a combination optical and electrical link test bed for exercising the electrical link ahead of any high speed ASIC that supports it's bandwidth

Laminate with MOTION sockets

MOTION Approach to Reliability: 2-to-1 Sparing

- Lack of field replacement drives stringent reliability requirements
- Laser wearout dominates: Sparing is desired
- MOTION has 2:1 laser redundancy on every channel
- Simulation shows ~1000x improvement in reliability at the end of 10 years of service →

Assumed Parameters:

VCSEL MTTF = 75 yrs, VCSEL FIT = 20 Fixed FIT = 50 FIT per module Ibias = 9 mA

Fixed FIT: package components that can not be spared = Sum of everything with a non-zero FIT

M&S: How much additional bandwidth can MOTION provide?

(b)

110 x 110 mm²

organic module

102.4-Tb/s switch with 16 13x13 mm²

modules

51.2 T

packaged optics on switches, CPUs or

GPUs

3.58-Tb/s Optics

Example of co-packaged optics enabling

Max switch BW for an up to 40% fill factor for the free carrier area

- P. Maniotis, et. al., Scaling HPC Networks with Co-packaged optics, OFC 2020, San Diego
 - CPO-enabled 51.2-Tb/s switch module with 128 400-Gbps ports
 - Vs Summit-like tech. (for 3 switch layers): (a) 2.8x more end points, (b) 11.2x higher bisection BW, (c) 21% fewer switches
- P. Maniotis, et. al., Toward lower-diameter large-scale HPC and data center networks with co-packaged optics, JOCN, Jan. 2021
 - CPO-enabled 60.8-Tb/s switch module with 152 400-Gbps ports
 - Vs Summit-like tech. (for similarly sized net.): (a) 3 vs 5 max hops (2 vs 3 switch layers), (b) 4x higher bisection BW, (c) 86% fewer switches

M&S: The benefits of higher-radix switches enabled by MOTION

Baseline network – 11,664 end points – 1,620 36-port switches

MOTION network - 11,552 end points - 228 152-port switches

4x bisection bandwidth
 Flatter network → (a) 3 vs 5 max hops
 (b) Reduced latency
 (c) Less network contention
 86% fewer switches → (a) Reduced cost
 (b) Reduced energy consumption
 (c) Easier management & administration

M&S Performance analysis: 4 synthetic benchmarks w/ hotspots (MOTION-2 → to extend w/ HPC/Datacenter benchmarks of interest)

Venus discrete-event network simulator

Simulation results		
Generator		
Packet size	1500 B	
Generation distribution	Bernoulli	
Data rate	100/400 Gbps	
Load	[0.1-1]	
Adapter/Switch		
Technology	InfiniBand	
Data rate per link	100/400 Gbps	
Delay	100 ns	
Switch buffer / port	128 KB	

Co-Packaging on Organic Laminates: MOTION Phase 2

- ► ARPA-E (U.S. Department of Energy) sponsored project, Phase 2: 2 years
 - IBM and Finisar Inc. (now II-VI Inc.)
- Target specifications
 - Optimized Electrical Interface for organic on-laminate channels
 - Optical Interface: 32 channels @ 112G PAM-4, 16 fibers, 2 wavelengths
 - < 2 pJ/bit (7W, 32 channels)
 </p>
 - 0°C to 70°C Case
 - 6dB (electrical) link budget (XSR-like)
 - 2 dB optical link margin (30 to 50m w/connectors)
 W:13mm x D:13mm x H:4mm
 - Package can withstand reflow onto ASIC 1st level substrate

940nm VCSEL @ 112G PAM-4

MOTION Phase 2 Proposed Hardware Changes

Parameter	Phase 1	Phase 2
Electrical Interface	16 channels @ 56G NRZ	> 32 channels @ tbd_G NRZ/PAM4
IC Technology	SiGe	CMOS
Optical Interface	16 channels @ 56 G NRZ	32 channels @ 112G PAM4
# of Wavelengths	1	2
# of Fibers	16 Tx + 16 Rx	16 Tx + 16 Rx
Fiber Type	50/125 MMF	50/125 MMF
Package I/O Pitch	400um	300um
Glass Carrier Size	13x13mm	13x13mm
Energy consumption	4 pJ/bit	2 pJ/bit
Projected cost	25¢/Gig	TBD but <25¢/Gig
Laminate interface	Soldered or LGA	Soldered or LGA

Phase 2: IBM SYSTEMS Group TECHNOLOGY EVALUATION

- Goal: <u>Assess the technology readiness of co-packaged optics</u>
 - Optical transceivers will be soldered directly on the top surface of a production laminate package
 - Four (4) optical transceivers and one (1) test site die on the top of a single FC-PLGA laminate, assembled with a thermal lid
 - Two evaluation cycles with positive results would result in a recommendation that this technology could move into a productization phase
 - Socketed optical transceivers will be evaluated through modeling
 - Focus on the thermal & mechanical robustness of packaging
- Evaluation challenges:
 - Assembly Processing
 - Package Reliability
 - Thermal Performance
 - Modelling

Figure 2 – Configuration with Soldered Interposer

Demonstrating a viable path to system integration is necessary before this technology can be included in a product plan, qualification, and commercial offering.

Technology-to-Market MOTION2, 3.2T (32x 112G-PAM4) Co-packaged Optical Assembly

- The MOTION2, 3.2T Co-packaged Optical Assembly(COA) is targeted at high-bandwidth, optical-interconnect applications which value:
 - High bandwidth density per square-millimeter
 - Protocol agnostic capability up to 112Gbps-PAM4/channel on 32-duplex channels
 - Low power-consumption
 - Low latency applications by utilizing NRZ encoding up to 56Gbps without FEC
- Four market segments Identified and Pursuing COA applications:
 - Datacenter Networking
 - High Performance Computing & AI-Deep Learning interconnect (Massively Parallel Processing)
 - Metro-access Edge Compute Equipment for edge-datacenters with hyper-converged or disaggregated resource pools
 - High-performance FPGA interconnects serving Aerospace, High-resolution Imaging, & future accelerator technologies
- Key challenges to commercialization are customer timeline for releasing applications, obtaining funding to support advanced development efforts, and defining a new COA/ASIC assembly, & final-test, supply-chain model to replace the pluggable transceivers model of the past two decades

Challenges for Co-packaged Optics

- Reliability
- Field Replacement/Serviceability
 - Fail-in-place Strategy?
- Yield
 - Who is responsibility for final yield?
- Assembly
 - Who does what and when?
- Standards and/or MSAs
 - Minimum Time for Standards seems to be > 2 years
 - Proprietary solutions likely to emerge first
- Compatible Technologies
 - MMF or SMF
- Field Upgradeable Firmware!

Ruminations about SiPh Co-Packaging

- Multiple unproven technologies introduced simultaneously to the heart of a system is risky.
- External high power lasers with PM fiber and internal Y cables with high fiber count: Unlikely to be cost competitive
- →SiPh still can't beat the cost of VCSELs+MMF

Size Comparison of QSFP-DD (DR8) and MOTION1

To scale; Both provide 800Gbps Bi-Directional Bandwidth but only one of these will reach 25¢/Gig.....

